Chapter 9 Hints and Solutions to Selected Exercises p. 70
Exercise 9.1b

b. x = 8, x = 21

Exercise 9.2

a. Conjecture: 
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b. Let a be such that 
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. By the corollary we proved in class, the linear congruence 
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 has only one solution x where 
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. Say x=b. Then for each a there is exactly one b, 
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, where 
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. There are two numbers between 1 and p-1 whose inverse is itself, namely 1 since 
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 and p-1 since 
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 All other numbers between 1 and p-1 have distinct inverses, that is, for each 
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, there is a b where 
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. Note that 
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 multiplies all numbers between 1 and p – 1. For each number in the factorial product a, somewhere else in the product there is a distinct number b where 
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 (excluding 1 and p-1). Using these facts, how could we simplify 
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Exercise 9.3

b. A conjecture could be: If 
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, then n is prime (except the case n = 4).
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