Chapter 11 – Additional Exercises

1.
Compute 
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 for the following values of n.


a. 
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b. 
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 - (answer 320)


c. 2047


d. 98865

      e. 183920 (answer 63360)

2.
Use the Chinese Remainder Theorem to solve the following congruences.


a.
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b. 
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c.
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3.
In the proof of the Chinese remainder theorem we did in class:

a. Prove that 
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b. Prove that 
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4.
Prove that if 
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. Hint: Use Exercise 11.3 from text makes this problem straight forward.
5.
Prove that 
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. Hint: Decompose 
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 into a product of arbitrary primes and then use Exercise 11.3 from text.

6.
Prove that if 
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Hint: Start by decomposing 
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 and 
[image: image16.wmf]n

 into a product of prime factors. What does the 
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 tell you about this decomposition? Then use Exercise 11.3 from text, applying the formula to 
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 first and using an algebraic trick.
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