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Chapter 11: Euler’s Phi Function
Practice HW p. 80 # 1, 2a, 3, 5 (Additional Web Exercises)
In this chapter, we want to look at how to compute efficiently the number 
[image: image1.wmf])

(

m

f

, which 
[image: image2.wmf])

(

m

f

, is the number of integers between 1 and m that are relatively prime to m. That is, 

[image: image3.wmf]}

1

)

,

gcd(

  

and

   

1

1

 

:

{

#

)

(

=

-

£

£

=

m

a

m

a

a

m

f


We would like to have a method of computing 
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 when m is larger. The next theorems describe some efficient ways of doing this.

Theorem 1: If p is a prime number, then 
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Example 1: Compute 
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Theorem 2: If p is a prime number, then 
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Example 2: Compute 
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We next state and prove a lemma that will be useful in a later result. 
Lemma: For integers a, m, and n, 
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For example, if a = 5, m = 6, and n = 7, the lemma implies
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We next use the previous lemma to prove a fundamental result.

Theorem 3: For two positive integers m and n, if the 
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Proof: We rearrange the integers between 1 and mn into an 
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By Lemma 5,
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Consider the 
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That is, if 
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Claim: In modulo n arithmetic, all entries in this column are just a rearrangement of 
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Example 3: Compute 
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Theorem 4: If  m  has the prime factorization 
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Proof: We can prove this result using mathematical induction. For the trivial case, that is, if 
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Now, assume the result is true if m is a product of r primes. We want to show the result is true if m is a product of r + 1 primes. Suppose 
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Hence, by the principle of mathematical induction, the result holds.
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Corollary 1: If p and q are primes where 
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Example 4: Compute 
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Example 5: Compute 
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Example 6: Compute 
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Euler Phi Function with Maple

Note that the numtheory package must be loaded to the home directory using the with statement before the phi command can be used.

> with(numtheory):
Compute 
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> phi(35);
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> phi(360);
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> phi(1575);
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Chinese Remainder Theorem
Theorem 5: Chinese Remainder Theorem. The system of linear congruences
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Claim that x satisfies every linear congruence. To show, that the jth  arbitrary congruence with modulus 
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To show there are no other incongruent solutions, suppose y is another solution to *. Then for all 
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Chinese Remainder Theorem Summary

To solve the system of linear congruences
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Example 7: Use the Chinese Remainder Theorem to solve the system of congruences 
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Using the Chinese Remainder Theorem in Maple
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> chrem( [2, 4, 6], [3, 5, 19] );
[image: image163.wmf][image: image164.wmf]
_1420052695.unknown

_1420053222.unknown

_1420056524.unknown

_1420058201.unknown

_1420141112.unknown

_1420141803.unknown

_1420196226.unknown

_1420196296.unknown

_1451671055.unknown

_1420196249.unknown

_1420141837.unknown

_1420142170.unknown

_1420142207.unknown

_1420142250.unknown

_1420141980.unknown

_1420141820.unknown

_1420141414.unknown

_1420141462.unknown

_1420141777.unknown

_1420141443.unknown

_1420141232.unknown

_1420141256.unknown

_1420141196.unknown

_1420140227.unknown

_1420140665.unknown

_1420140698.unknown

_1420141074.unknown

_1420140314.unknown

_1420140382.unknown

_1420140287.unknown

_1420140251.unknown

_1420140035.unknown

_1420140111.unknown

_1420140176.unknown

_1420139777.unknown

_1420139897.unknown

_1420057080.unknown

_1420057278.unknown

_1420057500.unknown

_1420057955.unknown

_1420058031.unknown

_1420057823.unknown

_1420057304.unknown

_1420057169.unknown

_1420057201.unknown

_1420057154.unknown

_1420056667.unknown

_1420056920.unknown

_1420056975.unknown

_1420056692.unknown

_1420056818.unknown

_1420056586.unknown

_1420055779.unknown

_1420055930.unknown

_1420056131.unknown

_1420056331.unknown

_1420055990.unknown

_1420055844.unknown

_1420055894.unknown

_1420054076.unknown

_1420054784.unknown

_1420055506.unknown

_1420054533.unknown

_1420054125.unknown

_1420053281.unknown

_1420053569.unknown

_1420053275.unknown

_1420052873.unknown

_1420053108.unknown

_1420053170.unknown

_1420053179.unknown

_1420052961.unknown

_1420053055.unknown

_1420053072.unknown

_1420052920.unknown

_1420052752.unknown

_1420052823.unknown

_1420052840.unknown

_1420052772.unknown

_1420052734.unknown

_1332433468.unknown

_1332480835.unknown

_1332481167.unknown

_1420035863.unknown

_1420051896.unknown

_1420051909.unknown

_1420051875.unknown

_1332481768.unknown

_1332485897.unknown

_1332486004.unknown

_1332486654.unknown

_1332487400.unknown

_1332487412.unknown

_1332487326.unknown

_1332486637.unknown

_1332485913.unknown

_1332482063.unknown

_1332484643.unknown

_1332482051.unknown

_1332481632.unknown

_1332481642.unknown

_1332481281.unknown

_1332481109.unknown

_1332481129.unknown

_1332480886.unknown

_1332481073.unknown

_1332480867.unknown

_1332433591.unknown

_1332480397.unknown

_1332480821.unknown

_1332433633.unknown

_1332433634.unknown

_1332433487.unknown

_1332433130.unknown

_1332433352.unknown

_1332433371.unknown

_1332433304.unknown

_1332432946.unknown

_1332433111.unknown

_1332433063.unknown

_1332432441.unknown

