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Chapter 18: Powers, Roots, and Unbreakable Codes
Practice HW p. 127 # 1, 2, 3a, 4
The RSA cryptosystem, name after its developers Ron Rivest, Adi Shamir, and Leonard Adelman, who invented the cryptosystem in 1977, is a method that has been widely publicized and is used widely today. 
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The purpose of this section is to describe the properties of the cryptosystem and some of its special properties.

To convert from alphabet letters to numbers we can work with, we will use the following alphabet assignment:

Alphabet Assignment 
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For example, the message “NUMBER THEORY” is represented as:


RSA Cryptosystem Setup
1. 
The receiver of the message chooses two “large” primes p and q and compute the quantities 
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2. 
The receiver of the message chooses a positive integer k  where
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.  Using the Euclidean algorithm remainder process, the receiver calculates an integer u where 
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, the receiver computes its positive representation in the congruence class by re-computing 
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. Here, k will be called the enciphering exponent and u will be called the deciphering exponent. The receiver makes the encryption exponent k and modulus m public. The receiver keeps the primes 
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3. 
Using an alphabet assignment to convert from English letters to numbers, the message sender computes an English plaintext message number
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 (Exercise 2 on p. 121 will show this requirement is not necessary) and that 
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, the sender uses the enciphering exponent k  to encipher the message by computing
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by successive squaring. Here, b will be the “secret” message number that will be transmitted from the sender to the recipient of the message. If 
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 into blocks of numbers smaller than m, say 
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4.
To decipher the message, the recipient uses the deciphering exponent u to reverse the process of step 3 by solving
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for a (using the ideas studied in Chapter 17 where x = a). That is, we compute
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using successive squares with the deciphering exponent u. Then using the alphabet, 


we convert a back to English and recover the plaintext. If a > m and the message was enciphered in blocks, we decipher each ciphertext block  
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The alphabet assignment is used to recover the message.
Important Facts Concerning the RSA Cryptosystem

1.
A common place that causes confusion when first learning the RSA is when to use m  and 
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2.
To ensure 
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 exists, a good choice for the enciphering exponent k is a prime number (although it is not necessarily required).
3. 
The requirement 
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4.
In practice, the modulus m and enciphering exponent k  are made public (everyone knows).
5. 
The security of the method is based on the message receiver keeping p and q secret. If p and q are secret, then 
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6.
If the message number a > m, then computing 
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a will not be recovered properly. The reason is that 
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Example 1: Suppose the proposed receiver a message chooses the primes 
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 to construct the parameters for a RSA cryptosystem. Illustrate how these parameters can be constructed and demonstrate how the sender of a message can used them to encrypt the message “USA”.
Solution:
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Security of the RSA Cryptosystem

This security of the RSA cryptosystem can be summarized by the following three comments.

Security of the Method

1. 
The security of the method is based on the message receiver keeping the deciphering exponent u secret. To keep u secret, the primes p and q must be kept secret. If p and q can be secret, 
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2. However, it is much easier to find primes 
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3.
In practice, 100 digit primes or more are used. Technology for finding large primes is far ahead of the technology for factoring large numbers.

Example 2: Provide a simple discussion on issues involving the security of the RSA Cryptosystem.
Solution: 
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The Public Key
When the RSA was developed, it was the first commercially developed type of system in which the sender and receiver of a message do not have to agree on a key beforehand in order to encipher and decipher messages. This illustrates an important fact that makes the RSA a special type of cryptosystem. The RSA is an example of a public key cryptosystem. This fact allows an individual to have a personal value of m and enciphering exponent k that are made public knowledge so that any number of people can send the individual messages. Since only the person receiving the messages knows the deciphering exponent u, only he or she can decipher the messages. The following diagram describes this process:
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Normally, a key center is responsible for distributing public and private keys to people who request them. This key center might be your company, school, or even teacher.
Digital Signatures
A problem that occurs with a public key cryptosystem deals with the issue of message “authenticity”, in that the receiver of a message wants to ensure that message received has come from the intended sender of the message. It is not difficult for an enemy to send a message using the recipients public key and pose as someone “friendly” to the recipient. This problem can be overcome by having the sender use his or her decryption exponent to “sign” the message before encrypting it with the recipient’s public key. The recipient can then decrypt the sent message using the recipient’s decryption exponent and then “unlocking” the signature using the sender’s public encryption exponent. We next mathematically describe this process.

RSA Digital Signature Scheme 

We assume that
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We also assume that 
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. We describe the RSA signature scheme with the following steps: 

Steps for RSA Signature Scheme

Given a message with want to send a where we assume 
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1. 
Sender signs the message with his or her’s decryption exponent 
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2. 
Sender encrypts signed message with the recipient’s public encryption exponent 
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3.
Recipient decrypts the message using his or her’s decryption exponent 
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4.
Recipient unlocks the sender’s signature by using the sender’s public encryption exponent 
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In mathematical notation, these steps can be described using the following notation.
RSA Signature Mathematical Description

Encryption: 
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Decryption: 
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We will illustrate how this process works in class using Maple.
Ron Rivest
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