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Chapter 19: Primality Testing and Carmichael Numbers
Practice HW p. 127 # 1, 2, 3a, 4
Recall Fermat’s Little Theorem says that if p is a prime number and a is an integer where
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If we multiply both sides by a, we obtain the equivalent expression
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Then if 
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, then p is composite.

Definition 1: An integer a where 
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 that shows p is composite is called a witness of p.

For example, 2, 3, 7, 8, 12, and 13 are witnesses of the composite number 15 since
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Note, 9 is not a witness 15 since
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Carmichael Numbers

A Carmichael number is a positive integer n where 
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 but n is not prime.
List of Carmichael Numbers Smaller than 10000
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How do we determine if a number is a Carmichael number?

Facts About Carmichael Numbers
1.
Every Carmichael number is odd.

Proof Fact 1: 
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2.
Every Carmichael number is a product of distinct primes (there are no repeated prime 
factors).

Proof Fact 2:
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Korselt’s Criterion for Carmichael Numbers

A composite number n is a Carmichael number if and only it is odd and for all primes p where 
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Proof: 
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 Assume n is odd and for any prime p where 
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. To show that n is Carmichael, we want to show that 
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This leads to two cases.

Case 1: If 
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Hence, 
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Case 2: If 
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Thus, 
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Assume n is a Carmichael number. We have already showed n is odd and that n is a product of distinct primes (that is 
[image: image60.wmf]n

p

|

2

/

 of all primes p that divide n). To show 
[image: image61.wmf])

1

(

|

)

1

(

-

-

n

p

, we will use the fact that for any prime p, there will always exist an integer a for any prime p where 
[image: image62.wmf]a

p

|

/

 and 

[image: image63.wmf])

(mod

 

1

1

p

a

p

º

-

  (Note that 
[image: image64.wmf]1

-

p

 is the smallest exponent that makes this true)
Since n is a Carmichael number, we know that 
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By Fermat’s Little Theorem, we know that 
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Also
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Thus, 
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Example 1: Determine if 
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Solution:
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Example 2: Determine if 
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Solution:
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Note that 
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Verifying that Large Integers are Prime
The following property is true for all odd prime numbers.

Prime Number Property
Let p be an odd prime number and write
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Choose an integer a where 
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Proof: 
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Taking the contrapositive of the previous property gives us another method for proving that a number p is not prime.
Rabin-Miller Test for Composite Numbers
Let n be an odd integer and write 
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where q is an odd positive integer. Then the number n is composite (not prime) if both the following conditions are true:

1.

[image: image97.wmf])

(mod

 

1

n

a

q

º

/


and

2.
None of the numbers 
[image: image98.wmf]q

a

, 
[image: image99.wmf]q

a

2

, 
[image: image100.wmf]q

a

4

, …, 
[image: image101.wmf]q

k

a

1

2

-

 are congruent to 
[image: image102.wmf])

(mod

 

1

n

-

 (which is the same as 
[image: image103.wmf])

(mod

 

)

1

(

n

p

-

.

Notes Concerning the Rabin-Miller Test
1. 
The base a that proves n is composite is called a Rabin-Miller witness.

2.
The test is designed to show that n is not prime. However, there is no types of numbers, like Carmichael numbers that can be used to discourage using Fermat’s Little Theorem to show that a number is prime, to discourage using the Rabin-Miller test to show a number is prime.

3.
Although the test cannot be used directly to show a number is prime, its repeated use can be to verify a number is prime to a certain degree of probability.

Fact: Given t integer bases a that fail to verify using the Rabin-Miller test that a number 
    n is not prime, then 

(Probability that n is prime) = 
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Example 3: Determine the approximate number of bases a that we would need to have

fail the Rabin-Miller test to show a 99.999 % chance that a given number is prime .
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To demonstrate how the Rabin-Miller test can be applied, we will use Maple.
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