PAGE
5

Supplemental Section: Factoring Integers
Practice HW Exercises 1-4 at the end of these notes
In this section, we examine techniques to obtain the prime factorization.
Square Root Test for Prime Factorization

Fact: A number m is prime if it has no prime factors less than the
[image: image1.wmf]m

. Why?

Hence, for small integers m, we look for prime factors only less than
[image: image2.wmf]m

.

Example 1: Factor 1247.
Solution:

█
Example 2: Explain why trying the factor 352603 would be difficult using the square root method.
Solution:

█

This leads to the next question: Are there better ways to obtain the prime factors, especially of larger numbers?
Basic Fermat Process for Factoring Integers
Suppose
[image: image3.wmf]pq

m

=

, where p and q are primes. Given m, we can find p and q by using the following process.

Let

[image: image4.wmf]2

q

p

x

+

=

 and
[image: image5.wmf]2

q

p

y

-

=

.

Then

[image: image6.wmf]y

x

p

+

=

 and
[image: image7.wmf]y

x

q

-

=

Write

[image: image8.wmf]2

2

)

)(

(

y

x

y

x

y

x

q

p

m

-

=

-

+

=

×

=

Our goal is to find x and y using the following process.

Steps
1.
Let x = the nearest integer greater than the
[image: image9.wmf]m

.

2.
For a fixed x, determine if
[image: image10.wmf]m

x

y

-

=

2

2

 has an integer solution for y (in other words, look to see if y is a perfect square.

3.
If no integer solution is found for y, then increase x by 1 and repeat step 2.
4.
Continue repeating steps 1 and 2 until an integer solution is found for y. Using the results for x and y, we have
[image: image11.wmf]y

x

p

+

=

 and
[image: image12.wmf]y

x

q

-

=

.

Note:
The basic Fermat’s method for factoring works well when the prime to be found

are relatively close together. Note, one should test whether the number m is prime

are not before using the method.
Example 3: Use the basic Fermat process to factor
[image: image13.wmf]6887

=

m

 into a product of primes.
Solution:

█

An Interesting Note Concerning the RSA Cryptosystem
If
[image: image14.wmf]m

 and
[image: image15.wmf])

(

m

f

 are known, then the primes p and q that produced these quantities can be found fairly easily.

Why? We know that

[image: image16.wmf]pq

m

=

and

[image: image17.wmf]1

)

1

)(

1

(

)

(

+

-

-

=

-

-

=

q

p

pq

q

p

m

f

.

Then,

[image: image18.wmf]q

p

q

p

pq

pq

q

p

pq

pq

m

m

+

=

-

+

+

-

+

=

+

-

-

-

+

=

-

+

1

1

)

1

(

1

)

(

1

f

Hence, we have

[image: image19.wmf])

(

1

m

m

q

p

f

-

+

=

+

Also,

[image: image20.wmf]m

m

m

pq

q

p

pq

q

pq

p

q

pq

p

q

p

4

))

(

1

(

4

)

(

4

2

2

)

(

2

2

2

2

2

2

-

-

+

=

-

+

=

-

+

+

=

+

-

=

-

f

Hence,

[image: image21.wmf]m

m

m

q

p

4

))

(

1

(

2

-

-

+

=

-

f

Knowing
[image: image22.wmf]q

p

+

 and
[image: image23.wmf]q

p

-

 allows us to easily find p and q, which we summarize as follows:
Method for Finding the Prime Factors p and q of m when
[image: image24.wmf]m

 and
[image: image25.wmf])

(

m

f

are Known

If
[image: image26.wmf]m

 and
[image: image27.wmf])

(

m

f

 are known quantities, then we can find

[image: image28.wmf])

(

1

m

m

q

p

f

-

+

=

+

and

[image: image29.wmf]m

m

m

q

p

4

))

(

1

(

2

-

-

+

=

-

f

Then,

[image: image30.wmf]2

)

(

)

(

q

p

q

p

p

-

+

+

=

 and

[image: image31.wmf]2

)

(

)

(

q

p

q

p

q

-

-

+

=

Example 4: If
[image: image32.wmf]2325157

=

m

 and
[image: image33.wmf]2322016

)

(

=

m

f

, find the primes p and q.
Solution:

█

Pollard Rho Method of Factorization

The Pollard Rho method was a method of factorization developed by J. Pollard back in 1974. It is good at finding prime factors on the order of size
[image: image34.wmf]9

6

10

10

-

.
Pollard Rho Method Steps

Given a composite number m.

1.
Choose an irreducible polynomial, say,
[image: image35.wmf]1

)

(

2

+

=

x

x

f

, and an initial value
[image: image36.wmf]0

x

.

2.
Compute
[image: image37.wmf]K

1,2,

i

),

(mod

)

(

1

=

=

-

m

x

f

x

i

i

3.
Find i, j where
[image: image38.wmf]1

)

,

gcd(

>

=

-

g

m

x

x

j

i

 . If
[image: image39.wmf]m

g

<

, g will be a factor of m. If g is not found, it is best to find another polynomial f and initial value
[image: image40.wmf]0

x

 and start again.

Notes Concerning Pollard Rho

1.
In practice, before using the test, it is best to verify the integer m is composite (Fermat’s Little Theorem, Rabin Miller test, etc.). The method may take a very long time to converge if m is prime.

2.
In practice, before using the test, it is best to use and elementary factorization test to make sure m has no prime factors less that 10000.
3.

[image: image41.wmf]g

m

x

x

j

i

=

-

)

,

gcd(

 does not have to be prime. However, if
[image: image42.wmf]m

g

<

<

1

 and g is of the size
[image: image43.wmf]9

6

10

10

-

, then g will almost certainly be prime if all prime factors < 10000 have been ruled out.. In the case of an RSA factorization where m has only two prime factors, g will be prime.

4.
If
[image: image44.wmf]m

m

x

x

j

i

=

-

)

,

gcd(

, the algorithm fails. In this case, on should make sure m is not already prime. If m is composite, then it is best to find another polynomial f and initial value
[image: image45.wmf]0

x

 and start again..

5.
Algorithm can be time consuming once the prime factors are >
[image: image46.wmf]10

10

. Algorithm is designed to give a solution in approximately
[image: image47.wmf]p

 steps. However, the number of steps for convergence can be very sensitive to the initial guess
[image: image48.wmf]0

x

.

6.
The goal is the find the “distance” between the iterates to get off the tail where
[image: image49.wmf])

(mod

g

x

x

j

i

=

. One way to do this is to compute the absolute value sequence

[image: image50.wmf]n

n

x

x

x

x

x

x

x

x

x

x

2

8

4

6

3

4

2

2

1

,

,

,

,

,

-

-

-

-

-

K

and compute
[image: image51.wmf]K

.

.

n

m

x

x

g

n

n

2

1

),

,

gcd(

2

=

-

=

. If
[image: image52.wmf]1

>

g

, we have a factor of m.
Example 4: Factor 31861 using the Pollard Rho method with polynomial
[image: image53.wmf]1

)

(

2

+

=

x

x

f

 and initial guess
[image: image54.wmf]1

0

=

x

.

Solution: For this problem, m = 31861. Our goal is to find two iterates i, j where

[image: image55.wmf]1

)

,

gcd(

>

=

-

g

m

x

x

j

i

 and
[image: image56.wmf]m

g

<

. We generate iterates using the formula

[image: image57.wmf]K

1,2,

i

),

(mod

)

(

1

=

=

-

m

x

f

x

i

i

and compute the greatest common divisor with m of each result (the Maple gcd command will be helpful) of the following absolute value sequence

[image: image58.wmf]n

n

x

x

x

x

x

x

x

x

x

x

2

8

4

6

3

4

2

2

1

,

,

,

,

,

-

-

-

-

-

K

.

Starting with the initial guess
[image: image59.wmf]1

0

=

x

, we have

[image: image60.wmf]2

)

31861

(mod

2

)

31861

mod

(

)

1

)

1

((

)

31861

(mod

)

1

(

)

(mod

)

(

2

0

1

=

=

+

=

=

=

f

m

x

f

x

[image: image61.wmf]5

)

31861

(mod

5

)

31861

mod

(

)

1

)

2

((

)

31861

(mod

)

2

(

)

(mod

)

(

2

1

2

=

=

+

=

=

=

f

m

x

f

x

Now
[image: image62.wmf]3

|

3

|

|

5

2

|

|

|

2

1

=

-

=

-

=

-

x

x

 and

[image: image63.wmf]1

)

|,

gcd(|

2

1

=

=

-

31861);

gcd(3,

m

x

x

 (not larger than 1 proceed to next iterates)

We next compute

[image: image64.wmf]26

)

31861

(mod

26

)

31861

mod

)

1

)

5

((

)

31861

(mod

)

5

(

)

(mod

)

(

2

2

3

=

=

+

=

=

=

(

f

m

x

f

x

[image: image65.wmf]677

)

31861

(mod

677

)

31861

mod

)

1

)

6

((

)

31861

(mod

)

26

(

)

(mod

)

(

2

3

4

=

=

+

=

=

=

(

f

m

x

f

x

Now
[image: image66.wmf]672

|

672

|

|

677

5

|

|

|

4

2

=

-

=

-

=

-

x

x

 and

[image: image67.wmf]1

)

|,

gcd(|

4

2

=

=

-

31861);

gcd(672,

m

x

x

 (not larger than 1 proceed to next iterates)

Continued on Next Page

We next compute

[image: image68.wmf]12276

)

31861

(mod

458330

)

31861

mod

)

1

)

677

((

)

31861

(mod

)

677

(

)

(mod

)

(

2

4

5

=

=

+

=

=

=

(

f

m

x

f

x

[image: image69.wmf]29508

)

31861

(mod

150700177

)

31861

mod

)

1

)

12276

((

)

31861

(mod

)

12276

(

)

(mod

)

(

2

5

6

=

=

+

=

=

=

(

f

m

x

f

x

Now
[image: image70.wmf]29482

|

29482

|

|

29508

26

|

|

|

6

3

=

-

=

-

=

-

x

x

 and

[image: image71.wmf]1

)

|,

gcd(|

6

3

=

=

-

31861);

gcd(29482,

m

x

x

 (not larger than 1 proceed to next iterates)

We next compute

[image: image72.wmf]24657

)

31861

(mod

870722065

)

31861

mod

)

1

)

29508

((

)

31861

(mod

)

29508

(

)

(mod

)

(

2

6

7

=

=

+

=

=

=

(

f

m

x

f

x

[image: image73.wmf]27909

)

31861

(mod

607967650

)

31861

mod

)

1

)

24657

((

)

31861

(mod

)

24657

(

)

(mod

)

(

2

7

8

=

=

+

=

=

=

(

f

m

x

f

x

Now
[image: image74.wmf]27232

|

27232

|

|

27909

677

|

|

|

8

4

=

-

=

-

=

-

x

x

 and

[image: image75.wmf]1

)

|,

gcd(|

8

4

=

=

-

31861);

gcd(27232,

m

x

x

 (not larger than 1 proceed to next iterates)

We next compute

[image: image76.wmf]6415

)

31861

(mod

778912282

)

31861

mod

)

1

)

27909

((

)

31861

(mod

)

27909

(

)

(mod

)

(

2

8

9

=

=

+

=

=

=

(

f

m

x

f

x

[image: image77.wmf]19675

)

31861

(mod

41152226

)

31861

mod

)

1

)

6415

((

)

31861

(mod

)

6415

(

)

(mod

)

(

2

9

10

=

=

+

=

=

=

(

f

m

x

f

x

Now
[image: image78.wmf]7399

|

7399

|

|

19675

12276

|

|

|

10

5

=

-

=

-

=

-

x

x

 and

[image: image79.wmf]151

)

|,

gcd(|

10

5

=

=

-

31861);

gcd(7399,

m

x

x

 (larger than 1 and less than 31861)

Hence, we have found a prime divisor
[image: image80.wmf]151

=

p

 of 31861. The other divisor is
[image: image81.wmf].

211

151

/

31861

/

=

=

=

p

m

q

 Thus, the prime factorization of 31861 is

[image: image82.wmf]211

151

31861

×

=

█
Why Does the Pollard Rho Method Work?

Recall that each iterative step,

[image: image83.wmf]K

1,2,

i

),

(mod

)

(

1

=

º

-

m

x

f

x

i

i

Then
[image: image84.wmf]))

(

(

|

1

-

-

i

i

x

f

x

m

. Suppose g is a factor of m (note that g is note actually known but we will consider it hypothetically). Then
[image: image85.wmf]m

g

|

 and hence
[image: image86.wmf]))

(

(

|

1

-

-

i

i

x

f

x

g

. Thus,

[image: image87.wmf])

(mod

)

(

1

g

x

f

x

i

i

-

º

After at most g steps (recall there are only g possible remainders 0, 1, 2, …,
[image: image88.wmf]1

-

g

), there must be a value where the sequence of values repeat. Let
[image: image89.wmf]i

j

>

 be the iterate where

[image: image90.wmf])

(mod

g

x

x

i

j

º

Thus,
[image: image91.wmf])

(

|

i

j

x

x

g

-

.

However, this leads to the question: How do we locate i and j where
[image: image92.wmf])

(mod

g

x

x

i

j

º

 if we do not actually know g? Since we know that
[image: image93.wmf]m

g

|

, when computing iterates, we calculate
[image: image94.wmf])

,

gcd(

m

x

x

g

i

j

-

=

. The goal is to find the distance in the iterate count where The goal is to find the number of iterates separating
[image: image95.wmf]j

x

 and
[image: image96.wmf]i

x

 where
[image: image97.wmf])

(mod

g

x

x

i

j

º

 and
[image: image98.wmf]1

)

,

gcd(

>

-

=

m

x

x

g

i

j

. If
[image: image99.wmf])

(mod

g

x

x

i

j

º

, we can ascertain the following:

[image: image100.wmf])

(mod

g

x

x

i

j

º

Applying f to both sides gives

[image: image101.wmf])

(mod

)

(

)

(

g

x

f

x

f

i

j

º

Now, since
[image: image102.wmf])

(mod

)

(

1

g

x

f

x

i

i

º

+

 and
[image: image103.wmf])

(mod

)

(

1

g

x

f

x

j

j

º

+

, it follows that

[image: image104.wmf])

(mod

1

1

g

x

x

i

j

+

+

º

Applying this over again multiple times, we can say for any integer k that

[image: image105.wmf])

(mod

g

x

x

k

i

k

j

+

+

º

This process can be described by the following picture:
[image: image106.emf]

By computing the absolute value sequence

[image: image107.wmf]n

n

x

x

x

x

x

x

x

x

x

x

2

8

4

6

3

4

2

2

1

,

,

,

,

,

-

-

-

-

-

K

gives us a method of finding the distance between iterates that gets us off the “tail” and limits the amount of times we have to compute the greatest common divisor.

Note in Example 4, we found
[image: image108.wmf]151

)

|,

gcd(|

10

5

=

=

-

31861);

gcd(7399,

m

x

x

. Hence, g = 151. The following table shows the values of
[image: image109.wmf])

151

(mod

i

x

 for 20 iterates.

	
[image: image110.wmf]i

x

	
[image: image111.wmf])

151

(mod

i

x

	
	
[image: image112.wmf]i

x

	
[image: image113.wmf])

151

(mod

i

x

	
[image: image114.wmf]2

1

=

x

	2
	
	
[image: image115.wmf]26337

11

=

x

	63

	
[image: image116.wmf]5

2

=

x

	5
	
	
[image: image117.wmf]23600

12

=

x

	44

	
[image: image118.wmf]26

3

=

x

	26
	
	
[image: image119.wmf]29721

13

=

x

	125

	
[image: image120.wmf]677

4

=

x

	73
	
	
[image: image121.wmf]23478

14

=

x

	73

	
[image: image122.wmf]12276

5

=

x

	45
	
	
[image: image123.wmf]21185

15

=

x

	45

	
[image: image124.wmf]29508

6

=

x

	63
	
	
[image: image125.wmf]10180

16

=

x

	63

	
[image: image126.wmf]24657

7

=

x

	44
	
	
[image: image127.wmf]20429

17

=

x

	44

	
[image: image128.wmf]27909

8

=

x

	125
	
	
[image: image129.wmf]28664

18

=

x

	125

	
[image: image130.wmf]6415

9

=

x

	73
	
	
[image: image131.wmf]25290

19

=

x

	73

	
[image: image132.wmf]19675

10

=

x

	45
	
	
[image: image133.wmf]6387

20

=

x

	45

Exercises on Factoring

1.
By testing prime factors up to the square roots of the following numbers, factor the

following integers.

a. 943

b. 2867

2.
Use the basic Fermat process to factor the following integers:

a. 374183

b. 8314637

3.
Factor m = 413028467 into the product of two primes if
[image: image134.wmf]412975416

)

(

=

m

f

.
4.
Use the Pollard Rho algorithm to factor the following integers using the function
[image: image135.wmf]1

)

(

2

+

=

x

x

f

.

a. 309763 with initial iterate of
[image: image136.wmf]4

0

=

x

.

b. 263297747 with an initial iterate of
[image: image137.wmf]173

0

=

x

.
_1270214609.unknown

_1424767605.unknown

_1424770905.unknown

_1424864336.unknown

_1424865458.unknown

_1424875983.unknown

_1424876061.unknown

_1424876098.unknown

_1424876311.unknown

_1451676222.unknown

_1424876324.unknown

_1424876299.unknown

_1424876074.unknown

_1424876016.unknown

_1424876045.unknown

_1424875999.unknown

_1424875384.unknown

_1424875519.unknown

_1424875574.unknown

_1424875942.unknown

_1424875962.unknown

_1424875926.unknown

_1424875546.unknown

_1424875469.unknown

_1424875485.unknown

_1424875449.unknown

_1424875261.unknown

_1424875275.unknown

_1424865573.unknown

_1424875005.unknown

_1424865281.unknown

_1424865409.unknown

_1424865417.unknown

_1424865383.unknown

_1424865298.unknown

_1424864989.unknown

_1424864997.unknown

_1424865028.unknown

_1424864458.unknown

_1424864980.unknown

_1424789223.unknown

_1424789560.unknown

_1424789584.unknown

_1424789499.unknown

_1424788935.unknown

_1424789180.unknown

_1424788727.unknown

_1424769586.unknown

_1424770438.unknown

_1424770785.unknown

_1424770883.unknown

_1424770738.unknown

_1424770381.unknown

_1424770416.unknown

_1424770053.unknown

_1424770225.unknown

_1424769853.unknown

_1424768652.unknown

_1424769487.unknown

_1424769571.unknown

_1424769469.unknown

_1424767794.unknown

_1424767883.unknown

_1424767835.unknown

_1424767852.unknown

_1424767805.unknown

_1424767618.unknown

_1424767661.unknown

_1270215343.unknown

_1270215729.unknown

_1270216154.unknown

_1270216589.unknown

_1270216785.unknown

_1270216797.unknown

_1270216858.unknown

_1270216658.unknown

_1270216702.unknown

_1270216516.unknown

_1270215924.unknown

_1270216116.unknown

_1270215806.unknown

_1270215545.unknown

_1270215674.unknown

_1270215445.unknown

_1270215103.unknown

_1270215230.unknown

_1270215300.unknown

_1270215225.unknown

_1270214770.unknown

_1270214853.unknown

_1270214626.unknown

_1207071826.unknown

_1207072356.unknown

_1270214554.unknown

_1270214579.unknown

_1207072991.unknown

_1207072190.unknown

_1207072118.unknown

_1207072175.unknown

_1207072024.unknown

_1207071229.unknown

_1207071700.unknown

_1207071735.unknown

_1207071600.unknown

_1207070871.unknown

_1207071160.unknown

_1207071196.unknown

_1207070982.unknown

_1207069480.unknown

_1207070845.unknown

_1207067406.unknown

_1207068801.unknown

_1207067283.unknown

