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Supplemental Section: Factoring Integers
Practice HW Exercises 1-4 at the end of these notes
In this section, we examine techniques to obtain the prime factorization.
Square Root Test for Prime Factorization

Fact: A number m is prime if it has no prime factors less than the
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. Why?

Hence, for small integers m, we look for prime factors only less than
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.

Example 1: Factor 1247.
Solution:
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Example 2: Explain why trying the factor 352603 would be difficult using the square root method.
Solution:
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This leads to the next question: Are there better ways to obtain the prime factors, especially of larger numbers? 
Basic Fermat Process for Factoring Integers 
Suppose 
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, where p and q are primes. Given m, we can find p and q by using the following process.

Let


[image: image4.wmf]2

q

p

x

+

=

 and 
[image: image5.wmf]2

q

p

y

-

=

.

Then


[image: image6.wmf]y

x

p

+

=

 and 
[image: image7.wmf]y

x

q

-

=


Write 


[image: image8.wmf]2

2

)

)(

(

y

x

y

x

y

x

q

p

m

-

=

-

+

=

×

=


Our goal is to find x and y using the following process.

Steps
1.
Let x = the nearest integer greater than the
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.

2.
For a fixed x, determine if 
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 has an integer solution for y (in other words, look to see if y is a perfect square.

3.
If no integer solution is found for y, then increase x by 1 and repeat step 2.
4.
Continue repeating steps 1 and 2 until an integer solution is found for y. Using the results for x and y, we have 
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Note: 
The basic Fermat’s method for factoring works well when the prime to be found 



are relatively close together. Note, one should test whether the number m is prime 



are not before using the method.
Example 3: Use the basic Fermat process to factor 
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 into a product of primes.
Solution: 
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An Interesting Note Concerning the RSA Cryptosystem
If 
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 are known, then the primes p and q that produced these quantities can be found fairly easily.

Why? We know that 
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Then,


[image: image18.wmf]q

p

q

p

pq

pq

q

p

pq

pq

m

m

+

=

-

+

+

-

+

=

+

-

-

-

+

=

-

+

 

          

          

1

1

 

          

          

)

1

(

1

)

(

1

f


Hence, we have
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Also,
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Hence,
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Knowing 
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 allows us to easily find p and q, which we summarize as follows:
Method for Finding the Prime Factors p and q of m when 
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Example 4: If 
[image: image32.wmf]2325157

=

m

 and 
[image: image33.wmf]2322016

)

(

=

m

f

, find the primes p and q.
Solution: 
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Pollard Rho Method of Factorization

The Pollard Rho method was a method of factorization developed by J. Pollard back in 1974. It is good at finding prime factors on the order of size 
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Pollard Rho Method Steps

Given a composite number m.


1. 
Choose an irreducible polynomial, say, 
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2.
Compute 
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3.
Find i, j where 
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, g will be a factor of m. If g is not found, it is best to find another polynomial f and initial value 
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Notes Concerning Pollard Rho

1.  
In practice, before using the test, it is best to verify the integer m is composite (Fermat’s Little Theorem, Rabin Miller test, etc.). The method may take a very long time to converge if m is prime.

2.
In practice, before using the test, it is best to use and elementary factorization test to make sure m has no prime factors less that 10000.
3. 
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, then g will almost certainly be prime if all prime factors < 10000 have been ruled out.. In the case of an RSA factorization where m has only two prime factors, g will be prime.

4.
If 
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, the algorithm fails. In this case, on should make sure m is not already prime. If m is composite, then it is best to find another polynomial f and initial value 
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5.
Algorithm can be time consuming once the prime factors are > 
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 steps. However, the number of steps for convergence can be very sensitive to the initial guess 
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6. 
The goal is the find the “distance” between the iterates to get off the tail where 
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and compute 
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Example 4: Factor 31861 using the Pollard Rho method with polynomial 
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Solution: For this problem, m = 31861. Our goal is to find two iterates i, j where 
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and compute the greatest common divisor with m of each result (the Maple gcd command will be helpful)  of the following absolute value sequence
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Starting with the initial guess 
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Now 
[image: image62.wmf]3

|

3

|

|

5

2

|

|

|

2

1

=

-

=

-

=

-

x

x

 and 


[image: image63.wmf]1

)

|,

gcd(|

2

1

=

=

-

31861);

 

gcd(3,

m

x

x

   (not larger than 1 proceed to next iterates)

We next compute


[image: image64.wmf]26

)

31861

(mod

26

)

31861

mod

)

1

)

5

((

)

31861

(mod

)

5

(

)

(mod

)

(

2

2

3

=

=

+

=

=

=

  

(

  

  

 

  

f

m

x

f

x



[image: image65.wmf]677

)

31861

(mod

677

)

31861

mod

)

1

)

6

((

)

31861

(mod

)

26

(

)

(mod

)

(

2

3

4

=

=

+

=

=

=

 

(

  

  

 

  

f

m

x

f

x


Now 
[image: image66.wmf]672

|

672

|

|

677

5

|

|

|

4

2

=

-

=

-

=

-

x

x

 and 


[image: image67.wmf]1

)

|,

gcd(|

4

2

=

=

-

31861);

 

gcd(672,

m

x

x

   (not larger than 1 proceed to next iterates)
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We next compute
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We next compute
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We next compute
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Hence, we have found a prime divisor 
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Why Does the Pollard Rho Method Work?

Recall that each iterative step, 
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After at most g steps (recall there are only g possible remainders 0, 1, 2, …, 
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However, this leads to the question: How do we locate i and j where 
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Applying f to both sides gives
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Now, since 
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Applying this over again multiple times, we can say for any integer k that 
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This process can be described by the following picture:
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gives us a method of finding the distance between iterates that gets us off the “tail” and limits the amount of times we have to compute the greatest common divisor.

Note in Example 4, we found 
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Exercises on Factoring

1. 
By testing prime factors up to the square roots of the following numbers, factor the 

 
following integers.

a. 943

b. 2867

2. 
Use the basic Fermat process to factor the following integers:


a. 374183


b. 8314637

3. 
Factor  m = 413028467 into the product of two primes if 
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4.
Use the Pollard Rho algorithm to factor the following integers using the function 
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a. 309763 with initial iterate of 
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b. 263297747 with an initial iterate of 
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