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Chapter 10: Congruences, Powers, and Euler’s Theorem
Practice HW p. 74 # 2, 3a, Additional Web Exercises
In this section, we state and prove Euler’s Theorem and look at its benefits.
Euler-Phi Function

Given an integer m, the Euler-Phi function, denoted  by 
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For example, 
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 since 1, 3, 7, 11, 13, 17, 19, 23, and 29 are the eight integers between 1 and 30 that are relatively prime to 30, that is, where 
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Also, 
[image: image5.wmf]6

)

7

(

=

f

 since 1, 2, 3, 4, 5, 6, are the eight integers between 1 and 7 that are relatively prime to 7, that is, where 
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Fact: For a prime p, 
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The Euler Phi Function can be used to generalize Fermat’s Little Theorem as follows.
Theorem: Euler’s Formula. Let 
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Proof: Consider the integers 
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 modulo m,  where 
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 are the list of integers between 1 and m that are relatively prime to m, that is, 
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, there is a distinct integer in the list of integers 
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 modulo m that is in its congruence class.   Since 
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. Suppose that two of the integers in the list 
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 are in the same congruence class, that is, suppose that 
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Then by definition of congruence, 
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 are distinct modulo m. But there are only 
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are the same integers, possibly appearing in a different order. Hence, there products would give an integer in the same congruence class, that is 
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which produces the result
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Note that since 
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Similarly, since 
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Example 1: Use Euler’s Formula to find a where 
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Solution: 
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