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Chapter 16: Powers Modulo m and Successive Squaring
Practice HW p. 116 # 1, 3, 5, (Additional Web Exercises)
In this chapter, we look at how to do exponentiation efficiently in modular arithmetic.
Exponentiation in Modular Arithmetic

As we will see later, the RSA Cryptosystem will require exponentiation with modular arithmetic to encrypt and decrypt messages. For example, we can easily see that 
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. Hence, it is easy to do modular exponentiation when the exponent k is small. However, if the exponent becomes larger, this presents more of a challenge. If we are asked to compute 
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, for example, we should note that, which due to size causes errors in computations due to computer round off. Our goal next is to present a method that overcomes this problem by demonstrating an efficient method for doing exponentiation in modular arithmetic.

Method of Successive Squaring for computing 
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Idea is to break the exponent k into a sum of powers of 2 (starting with
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) and break 
[image: image5.wmf]k

a

 in terms of exponential terms as these powers of 2, computing the powers of 2 by “successively squaring” the previous term

Example 1: Compute 
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Solution:
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Example 2: Compute 
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Solution: We first note that the exponent 
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. We first determine the powers of 2 that are less than this exponent. Starting with
[image: image9.wmf]0

2

, we see that


[image: image10.wmf]1

2

0

=

 , 
[image: image11.wmf]2

2

1

=

, 
[image: image12.wmf]4

2

2

=

, 
[image: image13.wmf]8

2

3

=

, 
[image: image14.wmf]16

2

4

=

, 
[image: image15.wmf]32

2

5

=

, 
[image: image16.wmf]64

2

6

=

, 
[image: image17.wmf]128

2

7

=

, 
[image: image18.wmf]256

2

8

=

, 
[image: image19.wmf]512

2

9

=



We can stop at 
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 We now decompose the exponent k into powers of 2.
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We next write
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We next compute the needed powers of 9 needed with respect to the modulus 907. The ones that we will need are indicated by    . Note that arrows are used to indicate the substitutions from the previous step.
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continued on next page
Hence,
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Note: In Example 7, to compute 
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by ordinary exponentiation, 562 multiplications are required. Using successive squares requires only 13 multiplications.

Maple Commands For Doing Exponentiation in Modular Arithmetic
You should note that &^ operator  (instead of just ^) tells Maple to do the exponentiation using successive squares instead of by brute force.
Compute 
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> 7 &^ 85 mod 41;
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Compute 
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> 9 &^ 563 mod 907;
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Recall Fermat’s Little Theorem provides a nice test for determining when large integers are not prime.

Recall that the theorem says if p is prime, then for all integers 
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We can use the contrapositive to show that an integer is not prime. That is, if we can find an integer a such that 
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then p is cannot be prime.
For example, if we want to determine if 15049 is prime, we choose an arbitrary base, say 
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Hence, 15049 is not prime.

Note! The converse of Fermat’s Little Theorem is not necessarily true, that is, if 
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 for some a does not always guarantee the modulus p is prime.

For example, it is a true fact that 
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. However, 561 is not prime since 
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