PAGE
6

Chapter 16: Powers Modulo m and Successive Squaring
Practice HW p. 116 # 1, 3, 5, (Additional Web Exercises)
In this chapter, we look at how to do exponentiation efficiently in modular arithmetic.
Exponentiation in Modular Arithmetic

As we will see later, the RSA Cryptosystem will require exponentiation with modular arithmetic to encrypt and decrypt messages. For example, we can easily see that
[image: image1.wmf]7

)

25

(mod

32

)

25

(mod

2

5

=

=

. Hence, it is easy to do modular exponentiation when the exponent k is small. However, if the exponent becomes larger, this presents more of a challenge. If we are asked to compute
[image: image2.wmf]41)

(mod

7

85

, for example, we should note that, which due to size causes errors in computations due to computer round off. Our goal next is to present a method that overcomes this problem by demonstrating an efficient method for doing exponentiation in modular arithmetic.

Method of Successive Squaring for computing
[image: image3.wmf]).

(mod

m

a

k

Idea is to break the exponent k into a sum of powers of 2 (starting with
[image: image4.wmf]0

2

) and break
[image: image5.wmf]k

a

 in terms of exponential terms as these powers of 2, computing the powers of 2 by “successively squaring” the previous term

Example 1: Compute
[image: image6.wmf]41)

(mod

7

85

Solution:

█

Example 2: Compute
[image: image7.wmf])

907

(mod

9

563

Solution: We first note that the exponent
[image: image8.wmf]563

=

k

. We first determine the powers of 2 that are less than this exponent. Starting with
[image: image9.wmf]0

2

, we see that

[image: image10.wmf]1

2

0

=

 ,
[image: image11.wmf]2

2

1

=

,
[image: image12.wmf]4

2

2

=

,
[image: image13.wmf]8

2

3

=

,
[image: image14.wmf]16

2

4

=

,
[image: image15.wmf]32

2

5

=

,
[image: image16.wmf]64

2

6

=

,
[image: image17.wmf]128

2

7

=

,
[image: image18.wmf]256

2

8

=

,
[image: image19.wmf]512

2

9

=

We can stop at
[image: image20.wmf]1024

2

10

=

 since
[image: image21.wmf].

563

1024

2

10

>

=

 We now decompose the exponent k into powers of 2.

[image: image22.wmf]1

2

16

32

512

3

16

32

512

19

32

512

51

512

563

+

+

+

+

=

+

+

+

=

+

+

=

+

=

.

We next write

[image: image23.wmf])

907

(mod

)

9

9

9

9

9

(

)

907

(mod

9

)

907

(mod

9

1

2

16

32

512

1

2

16

32

512

563

×

×

×

×

=

=

+

+

+

+

.

We next compute the needed powers of 9 needed with respect to the modulus 907. The ones that we will need are indicated by . Note that arrows are used to indicate the substitutions from the previous step.

[image: image24.wmf]9

907)

(mod

9

1

=

[image: image25.wmf]81

907)

(mod

81

907)

(mod

9

2

=

=

[image: image26.wmf]212

907)

(mod

6561

907)

(mod

)

81

(

907)

(mod

)

9

(

907)

(mod

9

2

2

2

4

=

=

=

=

.

[image: image27.wmf]501

907)

(mod

44944

907)

(mod

)

212

(

907)

(mod

)

9

(

907)

(mod

9

2

2

4

8

=

=

=

=

.

[image: image28.wmf]669

907)

(mod

251001

907)

(mod

)

501

(

907)

(mod

)

9

(

907)

(mod

9

2

2

8

16

=

=

=

=

.

[image: image29.wmf]410

907)

(mod

447561

907)

(mod

)

669

(

907)

(mod

)

9

(

907)

(mod

9

2

2

16

32

=

=

=

=

.

[image: image30.wmf]305

907)

(mod

168100

907)

(mod

)

410

(

907)

(mod

)

9

(

907)

(mod

9

2

2

32

64

=

=

=

=

.

[image: image31.wmf]511

907)

(mod

93025

907)

(mod

)

305

(

907)

(mod

)

9

(

907)

(mod

9

2

2

64

128

=

=

=

=

.

[image: image32.wmf]812

907)

(mod

261121

907)

(mod

)

511

(

907)

(mod

)

9

(

907)

(mod

9

2

2

128

256

=

=

=

=

[image: image33.wmf]862

907)

(mod

659344

907)

(mod

)

812

(

907)

(mod

)

9

(

907)

(mod

9

2

2

256

512

=

=

=

=

continued on next page
Hence,

[image: image34.wmf]520

907)

(mod

9

Hence,

520

3632148

9

676

597

907)

(mod

)

3632148

(

676

907)

(mod

54189

and

597

907)

(mod

353420

Note

907)

(mod

)

9

676

597

(

54189

81

669

and

353420

410

862

that

Note

907)

(mod

)

9

54189

353420

(

above

s

'

from

ng

Substituti

907)

(mod

)

9

81

669

410

862

(

)

907

(mod

)

9

9

9

9

9

(

)

907

(mod

9

)

907

(mod

)

9

9

9

9

9

(

)

907

(mod

9

)

907

(mod

9

563

1

2

16

32

512

1

2

16

32

512

1

2

16

32

512

1

2

16

32

512

563

=

=

=

×

×

=

=

=

×

×

=

=

×

=

×

×

×

=

×

×

×

×

=

×

×

×

×

=

=

×

×

×

×

=

=

+

+

+

+

+

+

+

+

█
Note: In Example 7, to compute
[image: image35.wmf]907)

(mod

9

563

by ordinary exponentiation, 562 multiplications are required. Using successive squares requires only 13 multiplications.

Maple Commands For Doing Exponentiation in Modular Arithmetic
You should note that &^ operator (instead of just ^) tells Maple to do the exponentiation using successive squares instead of by brute force.
Compute
[image: image36.wmf]41)

(mod

7

85

> 7 &^ 85 mod 41;
[image: image37.wmf]
Compute
[image: image38.wmf])

907

(mod

9

563

> 9 &^ 563 mod 907;
[image: image39.wmf]
Recall Fermat’s Little Theorem provides a nice test for determining when large integers are not prime.

Recall that the theorem says if p is prime, then for all integers
[image: image40.wmf]a

p

|

/

,

[image: image41.wmf])

(mod

1

1

p

a

p

º

-

We can use the contrapositive to show that an integer is not prime. That is, if we can find an integer a such that
[image: image42.wmf]a

p

|

/

 and

[image: image43.wmf])

(mod

1

1

p

a

p

º

/

-

,

then p is cannot be prime.
For example, if we want to determine if 15049 is prime, we choose an arbitrary base, say

[image: image44.wmf]2

=

a

 (note
[image: image45.wmf])

2

|

15049

/

 , and try to apply Fermat’s Little Theorem with
[image: image46.wmf]15049

=

p

. However, by successive squaring, it can be shown that

[image: image47.wmf])

15049

(mod

1

)

15049

(mod

6994

2

15048

º

/

º

Hence, 15049 is not prime.

Note! The converse of Fermat’s Little Theorem is not necessarily true, that is, if
[image: image48.wmf])

(mod

1

1

p

a

p

º

-

 for some a does not always guarantee the modulus p is prime.

For example, it is a true fact that
[image: image49.wmf])

561

(mod

1

2

560

º

. However, 561 is not prime since
[image: image50.wmf]17

11

3

561

×

×

=

.
_1332407272.unknown

_1332408325.unknown

_1332412524.unknown

_1420146317.unknown

_1420146801.unknown

_1420146939.unknown

_1420146847.unknown

_1420146700.unknown

_1420027389.unknown

_1420028757.unknown

_1420028944.unknown

_1420028956.unknown

_1420028342.unknown

_1420027356.unknown

_1332408468.unknown

_1332412256.unknown

_1332412347.unknown

_1332409013.unknown

_1332408375.unknown

_1332408035.unknown

_1332408176.unknown

_1332408239.unknown

_1332408083.unknown

_1332407899.unknown

_1332407913.unknown

_1332407848.unknown

_1332322402.unknown

_1332407177.unknown

_1332407235.unknown

_1332407249.unknown

_1332407191.unknown

_1332407118.unknown

_1332407160.unknown

_1332407063.unknown

_1161871730.unknown

_1161956119.unknown

_1332322297.unknown

_1161871744.unknown

_1161871753.unknown

_1161871759.unknown

_1161871748.unknown

_1161871735.unknown

_1161871694.unknown

_1161871714.unknown

_1161871186.unknown

