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Chapter 2: The Primitive Pythagorean Triples Theorem
Practice HW p. 19 # 1, 2, 6, 7, Additional Web Exercises
The Pythagorean Theorem
In a right triangle (triangle whose largest angle is 90 degrees), the sum of the squares of the two legs is equal to the square of the hypotenuse. The gives the Pythagorean Theorem


Pythagorean Theorem Formula
 For the right triangle






 we have
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Goal: We want to determine solutions to (a, b, c) to 
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 that are strictly natural numbers, that is numbers in the set 
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Examples: 
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Notation: We will designate solutions to 
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 as Pythagorean Triples (a, b, c).
Fact: There are infinitely many Pythagorean Triples.
Why? If (a, b, c) is a Pythagorean Triple, then (da, db, dc) is a Pythagorean Triple since
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 (since (a, b, c) is a Pythagorean Triple)
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(multiply  both sides by 
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(rewrite, hence revealing (da, db, dc) is a Pythagorean Triple)

However, da, db, and dc all have a common factor (divisor) given by d. We want to find Pythagorean triples with no common divisors.

Definition: A Primitive Pythagorean Triple (PPT) is a Pythagorean triple (a, b, c)  where a, b, and c have no common factors (divisors).

Examples of Primitive Pythagorean Triples: (3, 4, 5), (5, 12, 13), (15, 8, 17), 
(1023, 64, 1025), (1584187, 1284084, 2039245).

Definition: An integer d is said to divide an integer m, written as 
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 for some integer k. The integer d is said to be a divisor or factor of the integer m.
Examples: 






Facts Concerning Divisibility

1. 
If 
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Proof: 









2. If 
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 and m and n have no common divisors, then 
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Proof: Chapter 7
Claim: For a Primitive Pythagorean Triple (a, b, c), either  a or b is odd (but not both) and c must be odd.

Proof of Claim: 
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For Primitive Pythagorean Triples (a, b, c), from now on we will assume that a is odd, b is even, and c is odd.

To generate Primitive Pythagorean Triples, we use the following theorem.


Theorem: Primitive Pythagorean Triples Theorem: Every Primitive Pythagorean Triple (a, b, c) with a odd, b even, and c odd, can be generated using the formulas
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where s and t are odd positive integers with 
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 that are chosen with no common divisors.

Proof: Since (a, b, c) is a Pythagorean Triple, 
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. Hence, 
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We first claim that 
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 have no common divisors larger than 1. Suppose this is not true, that is, suppose there is a positive integer 
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Now, since 
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Since b and c have no common factors (because they are produced from a Primitive Pythagorean Triple), it follows from Fact 2 above that 
[image: image40.wmf]2

|

d

. Hence 
[image: image41.wmf]1

=

d

 or 
[image: image42.wmf]2

=

d

.
However, 
[image: image43.wmf]2

|

a

d

 where 
[image: image44.wmf]2

a

 is odd. This implies 
[image: image45.wmf]1

=

d

. Thus 
[image: image46.wmf])

(

b

c

+

 and 
[image: image47.wmf])

(

b

c

-

 have no common divisors larger than 1.

Now, 
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then s and t will both be positive integers and 
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 with no common factors larger than 1. If we take these two equations and add and subtract them we get
Add:   
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Subtract:   
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Solving each equation for b and c gives 
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The last step of the proof involves showing that 
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 are Primitive Pythagorean Triples, that is they are pairwise relatively prime. This will be done in an Exercise in Chapter 7.
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Example 1: Using the Primitive Pythagorean Triples Theorem, generate a Primitive Pythagorean Triple if 
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Example 2: Using the Primitive Pythagorean Triples Theorem, generate a Primitive Pythagorean Triple if 
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Solution:
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Example 3: Explain why 
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 cannot be used to generate a Primitive Pythagorean Triple.
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