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Chapter 6: Linear Equations and the Greatest Common Divisor
Practice HW p. 43 # 1, 2, Additional Web Exercises, p. 53 # 1, 2
In this chapter, we look at how to produce 
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Definition: Given two positive integers 
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Claim: The smallest positive value of 
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Proof of Claim: To prove the claim, we must first show a solution 
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. This can be done by showing all remainders produced by the Euclidean Algorithm can be written as 
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 (recall the last non-zero remainder gives the gcd). We will prove this by using the principle of mathematical induction. To show that it is true for the first remainder produced by the Euclidean Algorithm, we have
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which shows the result holds for the first remainder. Suppose now the result holds for all remainders produced in the Euclidean Algorithm before the remainder 
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By the induction hypothesis, the will exist 
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Hence, the result holds for the remainder 
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, and by the principle of mathematical induction, any subsequent remainders (including the one that produces the gcd).
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Example 1: Find a solution in the integers to the equation 
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Example 2: Find a solution in the integers to the equation 
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Maple Command for Finding Gcd and x and y where ax + by = gcd(a,b)

Solve 
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> igcdex(52598, 2541, 'x', 'y');
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> x;
[image: image46.wmf]
> y;
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Solve 
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> igcdex(1095939, 3854682, 'x', 'y');
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> x;
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> y;
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Finding Other Solutions to ax+by = gcd(a, b)
How do we classify other solutions for x and y  to 
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To see how other solutions can be produced, consider the case where 
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To produce other solutions, we introduce the term kab to this equation, where k is an integer. This will give
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The next question we want to ask is this. Are there other ways to produce solutions to 
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Claim: Given a solution 
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Proof of Claim: Suppose 
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Now, multiply Equation 2 by 
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Taking * and ** gives 
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If we set 
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Solving for 
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The last thing we want to ask is how we generate additional solutions if  
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If we replace a by 
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Theorem: Linear Equation Theorem. Let a and b be positive integers and 
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Example 3: Find a solution for generating an infinite number of solutions to the equation
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Example 4: Find a solution for generating an infinite number of solutions to the equation
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Note: We can use the fact that 
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Fact: Prove that if 
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Proof of Fact:
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