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Chapter 7: Factorization and the Fundamental Theorem of Arithmetic
Practice HW p. 53 # 1-4, Additional Web Exercises
In this chapter, we began to examine some basic about primes and their importance.
Definition: A prime number is a positive integer 
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 (note that 1 is not considered to be prime) whose only positive divisors are 1 and 
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 (1 and itself). A number 
[image: image3.wmf]2

³

m

 that is not prime is said to be composite.

The following set represents the set of primes that are less than 100:

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97…}

Theorem: Let 
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 be a prime number and suppose for two integers a and b that 
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Proof: 
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For example, we know that 
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The previous theorem can be extended to show the next result.
Theorem: Prime Divisibility Property. Let p be a prime number and suppose that 
[image: image13.wmf])

(

|

2

1

r

a

a

a

p

L

×

. Then p divides one of the 
[image: image14.wmf]s

'

i

a

.

Proof: 





























█



The Principle of Mathematical Induction

If 
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 is a collection of n statements with the properties that 
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 is true for all positive integers 
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Example 1: Use induction to prove that  
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Solution: 
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The Fundamental Theorem of Arithmetic
We next discuss how primes represent the building blocks for all integers. 

Theorem: The Fundamental Theorem of Arithmetic. Every integer 
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 can be factored in a product of primes 
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 in exactly one way.
Proof: To prove the Fundamental Theorem, we will prove the following.

1. Any integer 
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, then n can be factored into a product of primes in

some way. 
To do this, we use induction. 

i) If 
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, then since 2 is prime, it can be factored as itself.
ii) Now, assume the assertion of true for all integers n where 
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the assertion is true for the integer 
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is a product of primes. Hence, by induction, the result is true for all integers larger than 2.

2.
We next show the factorization can be done in only one way, disregarding order.
To show this, assume that n can be factored into a produce of primes in two ways, that is say 
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By divisibility, this says that 
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By divisibility, this says that 
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We continue in this fashion until all of the 
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We have shown that 
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Example 2: Factor 5040 into a product of primes.

Solution:
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Example 3: Factor 58261 into a product of primes.


Solution:
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Notes
1.
If 
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 is the product of the prime factors that a and b have in common.
Maple Command for Obtaining the Prime Factorization of a Number
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