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Chapter 8: Congruences
Practice HW p. 62 # 1, 2, 3, 5, 6, Additional Web Exercises
In this section, we look at the fundamental concept of modular arithmetic, which is used in a variety of applications in number theory.
Modular Arithmetic

Definition: Given two integers 
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, we say that a is congruent to b modulo m, written


[image: image3.wmf])

(mod

 

m

b

a

º


if 
[image: image4.wmf])

(

|

b

a

m

-

. The number m is called the modulus of the congruence.

Example 1: Explain why 
[image: image5.wmf])

6

(mod

 

12

48

 

),

5

(mod

 

3

23

º

º

 but 
[image: image6.wmf])

4

(mod

 

3

20

º

/

.

Solution: 
[image: image7.wmf])

6

(mod

 

12

48

 

and

 

)

5

(mod

 

3

23

º

º

 since 
[image: image8.wmf])

3

23

(

|

5

-

 or 
[image: image9.wmf]20

|

5

 and 
[image: image10.wmf])

12

48

(

|

6

-

 or 
[image: image11.wmf]36

|

6

. However, 
[image: image12.wmf])

4

(mod

 

3

20

º

/

 since 
[image: image13.wmf])

3

20

(

|

4

-

/

 or 
[image: image14.wmf]17

|

4

/

.













█

Theorem: 
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Fact: Computationally, 
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For example, 
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Note: When performing modular arithmetic computationally, the remainder r should never be negative (this fact comes from the division algorithm that when computing 
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Example 2: Compare computing 
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Doing Modular Arithmetic For Larger Numbers With A Calculator

To do modular arithmetic with a calculator, we use the fact from the division algorithm that
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We put this result in division tableau format as follows:
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Example 3: Compute 
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Example 4: Compute 
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Solution: Using a calculator, we obtain 
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. The largest integer less than 48.6 is 48. Hence, we assign q = floor(48.6) = 48. If we let b= 500234 and m = 10301 in (2), then 
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Example 5: Compute 
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Solution: Using a calculator, we obtain 
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Maple Commands for Doing Modular Arithmetic
Compute 
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> 1024 mod 37;
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> 500234 mod 10301;
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Generalization of Modular Arithmetic 

Fact: The common remainder of two numbers have when they are divided can be used to define a congruence class. The remainder r will be the smallest positive integer in the congruence class. Suppose r is the remainder of 
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Theorem 1 says that then
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Example 6: Find all elements of the congruence class 
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Example 7 Find congruence class 
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Note: For 
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Fact: Given 
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Facts about Congruences
1.
If 
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Note: Computationally, in mod m arithmetic, we have
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For example, we can by simplify 
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Now, consider the problem of solving 
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Solving Equations Involving Congruences
We want to consider the problem of solving the linear congruence equation
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For example, consider the problem of solving the linear congruence
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Also, it can be seen that 
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We want solution representations that are not in the same congruence class. These solutions are called incongruent solutions.


Fact: One way to find all of the incongruent solutions when solving a congruence for x in mod m arithmetic, set 
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 and find the values of x that satisfies the congruence. This is known as the method of brute force for finding the incongruent  solutions.

Example 8: Find the incongruent solutions to 
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However, the brute force method becomes less practical for finding incongruent solutions to congruences with larger moduli, like for example, solving the congruence
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The next theorem deals with this issue.


Theorem: Linear Congruence Theorem. Let a, c, and m be integers where 
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Then a complete set of incongruent solutions is given by
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Proof: To prove part i, suppose there is a solution to [image: image98.wmf])
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Hence,
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Example 9: Use the Linear Congruence Theorem to find all of the incongruent solutions to  
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Example 10: Use the Linear Congruence Theorem to find all of the incongruent solutions to  
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Example 11: Use the Linear Congruence Theorem to find all of the incongruent solutions to  
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Corollary to the Linear Congruence Theorem: The congruence 
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Solving Congruences of Higher Degree
Solving congruences of higher degrees are generally more difficult than linear congruences. If the modulus m is small enough, the brute force method will suffice.
Example 12: Find the incongruent solutions for 
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Example 13: Find the incongruent solutions for 
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However, the brute force method becomes more inefficient the larger the modulus. In our examples, we saw that 
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Theorem: Polynomial Roots Mod p Theorem. Let p be a prime and let 
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be a polynomial of degree 
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Proof: Suppose there at least one polynomial where p does not divide the leading coefficient that has more distinct incongruent solutions then its degree. Let d be a polynomial of least degree for these polynomials given by


[image: image173.wmf]0

1

1

0

)

(

a

x

a

x

a

x

f

d

d

+

+

+

=

-

K


Suppose 
[image: image174.wmf]1

2

1

,

,

,

+

d

d

r

r

r

r

K

 be these incongruent solutions. For each incongruent solution 
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For the other incongruent solutions 
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Take Floor of Quotient (largest integer less than calculator value of � EMBED Equation.3  ���).
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