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Chapter 9: Congruences, Powers, and Fermat’s Little Theorem
Practice HW p. 70 # 1, 2, 4, Additional Web Exercises
In this section, we state and prove Fermat’s Little Theorem and look at its benefits.
Theorem: Fermat’s Little Theorem. Let p be a prime number and let 
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Proof: Consider the integers 
[image: image5.wmf]a

p

a

a

a

)

1

(

 

,

 

,

3

 

,

2

 

,

-

K

 modulo p. We first claim that for each integer of the 
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distinct integers is this list, there is a distinct integer in the list of integers 
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 modulo p that is in its congruence class. For the list 
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 (see Exercise 12). Suppose that two of the integers in the list 
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 are in the same congruence class, that is, suppose that 
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Then by definition of congruence, 
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 are distinct modulo p. But there are only 
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 distinct non-zero integers modulo p, namely 
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are the same integers, possibly appearing in a different order. Hence, there products would give an integer in the same congruence class, that is 
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Since 
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 has a multiplicative inverse. Multiplying both sides by 
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which produces the result


[image: image32.wmf])

 

1(mod

 

1

p

a

p

º

-














█

Benefits of Fermat’s Little Theorem
1.
Can help to solve congruences with large exponents.

2.
Can be used for basic primality testing.


Example 1: Find an integer why 
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Example 2: Solve 
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Primality Testing

Fermat’s Little Theorem provides a nice test for determining when large integers are not prime.

Recall that the theorem says if p is prime, then for all integers 
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We can use the contrapositive to show that an integer is not prime. That is, if we can find an integer a such that 
[image: image38.wmf]a

p

|

/

 and

[image: image39.wmf])

(mod

1

1

p

a

p

º

/

-

,
then p is cannot be prime.
Example 3: What does the statement
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Note! The converse of Fermat’s Little Theorem is not necessarily true, that is, if 
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 for some a does not always guarantee the modulus p is prime.
For example, it is a true fact that 
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