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Alphabet Assignment 
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RSA Cryptosystem Setup

1. 
Choose two “large” primes p and q and compute the quantities 
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2. 
A positive integer k is chosen where
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.  Using the Euclidean algorithm remainder process, we calculate an integer u where 
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by solving 
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, we compute its positive representation in the congruence class by re-computing 
[image: image10.wmf]))

(

 

mod

 

(

 

m

u

u

f

=

. The number u is the multiplicative inverse of 
[image: image11.wmf]))

(

(mod

m

k

f

, that is 
[image: image12.wmf]))

(

(mod

 

1

m

k

u

f

-

=

. Here, k will be called the enciphering exponent and u will be called the deciphering exponent.

3. 
Using an alphabet assignment to convert from English letters to numbers, compute an English plaintext message number
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 (Exercise 2 on p. 121 will show this requirement is not necessary) and that 
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, we use the enciphering exponent k  to encipher the message by computing
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by successive squaring. Here, b will be the “secret” message number that will be transmitted from the sender to the recipient of the message. If 
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 into blocks of numbers smaller than m, say 
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, and encipher each block separately, that is, we compute
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4.
To decipher the message, the recipient uses the deciphering exponent u to reverse the process of step 3 by solving
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for a (using the ideas studied in Chapter 17 where x = a). That is, we compute
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using successive squares with the deciphering exponent u. Then using the alphabet, 


we convert a back to English and recover the plaintext. If a > m and the message was enciphered in blocks, we decipher each ciphertext block  
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separately. That is, we compute
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The alphabet assignment is used to recover the message.
Important Facts Concerning the RSA Cryptosystem

1.
A common place that causes confusion when first learning the RSA is when to use m  and 
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2.
To ensure 
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 exists, a good choice for the enciphering exponent k is a prime number (although it is not necessarily required).
3. 
The requirement 
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 is necessary for the method to work. However, the requirement 
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4.
In practice, the modulus m and enciphering exponent k  are made public (everyone knows).
5. 
The security of the method is based on keeping p and q secret. If p and q are secret, then 
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is impossible.

6.
If the message number a > m, then computing 
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a will not be recovered properly. The reason is that 
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