
Review of Population 
Genetics Equations 

 
1. Hardy-Weinberg  Equation: 

p2 + 2pq + q2 = 1 
 
Derivation: Take a gene with two alleles; call them A1 and A2. (Dominance doesn’t 
matter for our purposes; this works equally well with codominance or incomplete 
dominance.) In a population, some members will have the A1 A1 genotype, some will 
have the A1 A2 genotype, and some will have A2 A2. 

 
Now, imagine that you can somehow take all the gametes produced by the members of 
the population—for simplicity, we’ll assume that these are eggs and sperm. Some 
gametes, of course, carry A1, and some A2. 

 
p = freq (A1) 
q = freq (A2) 

 
NOTICE that: the frequency of an allele is equal to the probability that a randomly 
chosen gamete will be carrying that allele. Also notice that p+q=1. 

 
What’s the chance that an egg and sperm drawn randomly will both be carrying A1? 
Obviously, it’s p ×  p, or p2. And the chance that both gametes will both bear A2 is q ×  q, 
or q2. There are two other possibilities: sperm with A1 and egg with A2, or sperm with A2 
and egg with A1. The chance of either one happening is p ×  q, and the total probability of 
producing a zygote with the A1 A2 genotype is twice that: 2pq. All of these probabilities 
sum to 1. So p2 + 2pq + q2= 1. [Since p+q=1, (p+q)2 = p2 + 2pq + q2 = 12 =1.] 

 
WHO CARES? It’s like this: this equation links allele frequency to genotype frequency, 
assuming certain conditions are met. This means that: 

 
1) If you know allele frequencies, you can predict the genotype frequencies, and compare 
them with the actual frequencies. If they don’t match, then one of your assumptions is 
violated—maybe there is natural selection going on, or immigration, or non-random 
mating. . . 

 
2) If you know genotype frequencies, you can predict allele frequencies, and compare 
them with the actual frequencies. Again, if they don’t match, then one of your 
assumptions is violated. 

 
3) If you know phenotype frequencies, then you can estimate genotype and allele 
frequencies—but you can’t test the underlying assumptions. 



2. Fitness: 

𝒑𝟐𝒘𝟏𝟏 + 𝟐𝒑𝒒𝒘𝟏𝟐 + 𝒒𝟐𝒘𝟐𝟐 = 𝒘 

𝒑𝟐
𝒘𝟏𝟏

𝒘 + 𝟐𝒑𝒒
𝒘𝟏𝟐

𝒘 + 𝒒𝟐
𝒘𝟐𝟐

𝒘 = 𝟏.𝟎 

Derivation: w in general means “relative fitness”: a measurement of the relative ability of 
individuals with a certain genotype to reproduce successfully. W11, for instance, means 
the relative ability of individuals with the A1A1 genotype to reproduce successfully. w is 
always a number between 0 and 1. Adding fitness (w) to the Hardy-Weinberg equation as 
shown above allows you to predict the effect of selection on gene and allele frequencies in 
the next generation. 

 
Take the Hardy-Weinberg equation and multiply each term (the frequency of each 
genotype) by the fitness of that genotype. Add those up and you get the mean fitness, 𝑤 
(“w-bar”) . Divide through by 𝑤 and you get the second equation. Here, each term of the 
equation is multiplied by the fitness of a genotype divided by the mean fitness. If a 
genotype is fitter than average, this quotient is greater than 1, and that genotype will 
increase in frequency in the next generation. If a genotype is less fit than average, the 
quotient is less than 1, and that genotype will decrease in frequency in the next 
generation.  
 
A related term to fitness (w) that you may run across is the selection coefficient, s.  The 
selection coefficient compares two phenotypes and provides a measure of the 
proportional amount that the phenotype under consideration is less fit.  With no selection 
against a phenotype s=0 and if a phenotype is completely lethal s=1.  The relation ship 
between relative fitness (w) and the selection coefficient (s) is s = 1-w. 
 
3. Mutation: 

𝒑 𝒕!𝟏 = (1− µμ)𝑝! + ν𝑞! 
 

𝛥𝑝 = 𝑝! 1− 𝜇 − 𝜈 + 𝜈 − 𝑝! 
 
Derivation: Imagine that in each generation, allele A1 mutates to allele A2 with a 
frequency of µ , and that allele A2 “back-mutates” to A1 with a frequency of ν. Then in 
each generation, q, the frequency of the A2 allele, increases by a factor of µp (the rate of 
mutation of A1 to A2 times the frequency of A1) and decreases by a factor of νq. These 
will eventually balance each other out, so that 𝛥𝑝 = 0 (i.e. allele frequencies don’t 
change any further). When 𝛥𝑝 = 0, it must be true that µp = νq. From this, with a little 
algebraic jugglery, you can derive the formula 
 

𝑝 =
𝜈

(𝜇 + 𝜈) 

 
 
where 𝑝 (“p-hat”) is the equilibrium frequency. Similar equations let you derive 𝑞. 

 
This isn’t all that useful an equation, however. In humans for example, mutation rates are 
estimated at 1.2 x 10-8 mutations/base pair/generation.   Assuming an average gene size of 



~ 1000 base pairs results in a mutation rate is on the order of 10-5 
mutations/locus/generation.  For example, in humans, mutations in the gene encoding 
the Huntington’s disease protein occur spontaneously about once in every 200,000 
gametes produced. This means that mutation, by itself, has very little effect on allele 
frequencies. 
 
4.  Genetic Drift 

Genetic drift refers to chance fluctuations in allele frequency (sampling error).  We have dealt 
with sampling error before when looking at probabilities of parents with a particular genotype 
having a set of offspring with a particular phenotype distribution.  There we used the Binomial 
Probabilities formula: 

𝑃𝑟𝑜𝑏 =   
𝑛!

𝑥! 𝑛 − 𝑥 !𝑝
!𝑞(!!!) 

 
Now lets apply the Binomial Probabilities formula to genetic drift.  Imagine we have a 
population of 10 diploid individuals (N=10) which arose from a sample of 2N (=20) gametes 
out of an essentially infinite pool of gametes. Here we can use the binomial formula to predict 
the probability that our population contains exactly 0, 1, 2, … 2N alleles of type A1.  This can 
be found buy the successive terms in the expansions of (p+q)2N  where p = freq(A1) allele and q 
= freq(A2) allele in the parental generation.  The probability that the sample contains exactly x 
alleles of type A1 is: 
 

𝑃𝑟𝑜𝑏 =   
2𝑁!

𝑥! 2𝑁 − 𝑥 !𝑝
!𝑞(!!!!) 

 
Variance of allele frequencies from one generation to the next 
 

𝑉𝑎𝑟 𝑝!!! =
𝑝! 1 − 𝑝!

2𝑁
=
𝑝! ∗ 𝑞!
2𝑁

 

 
Where 𝑉𝑎𝑟 𝑝!!!  is the variance in the allele frequencies after one generation, N is the 
population size, and pt and qt are the allele frequencies in the previous generation. 
Variance measures the uncertainty about allele frequencies in the next generation given the 
current allele frequency.  You may have guessed the amount of uncertainty is inversely 
proportional to the population size.  From the above equation you can also see that 
variance is also dependent on allele frequencies.  For a given population size the greatest 
variance occurs when allele frequencies are equal (p = q = 0.5) and decrease as the 
difference allele frequencies increase. The square root of the variance is the standard 
deviation, which you might be more familiar with. 
	
  
There are four characteristics of genetic drift that I think are particularly important for you to 
remember: 
 
1. Allele frequencies tend to change from one generation to the next simply as a result of 

sampling error. We can specify a probability distribution for the allele frequency in the next 
generation, but we cannot predict the actual frequency with certainty. 

 
2. There is no systematic bias to changes in allele frequency. The allele frequency is as likely 

to increase from one generation to the next as it is to decrease. 
 
3. If the process is allowed to continue long enough without input of new genetic material 



through migration or mutation, the population will eventually become fixed for only one of 
the alleles originally present. 

 
4. The time to fixation on a single allele is directly proportional to population size, and the 

amount of uncertainty associated with allele frequencies from one generation to the next is 
inversely related to population size.  

 


